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where §, is defined by equation (65) of Wait
[1]. It is easily found that for |ra|<1:
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In (4), » is an integer, K, is a modified
Bessel function, and a dash denotes dif-
ferentiation with respect to the argument.
Equations (3) and (4) describe the low-
frequency resonances of the cylindrical
cavity. They may be compared with cor-
responding expressions which have been
derived for a spherical cavity [2].

For an incompressible plasma # =0. Then
T, i1s infinite and §,=0. In this case, the
resonance condition (3) becomes e/e¢g= —1
[1], [3]- Budden [3] has considered the low-
frequency resonances of a cylindrical cavity
in an incompressible anisotropic loss-free
plasma. The effect of losses in this situation
has also been considered [4].

For [z{>>1 and |z|>|»|, the modified
Bessel function K, (z) of complex order » and
complex argument z satisfies

K, (2) ~ (x/22)1% 2, —7 <argz <x/2 (5)
[5], so that K,/ (z)/K,(z)~—1. Hence, for

[7pa|>1 and [7a]>3>|n], using (2) and (1),
(4) becomes
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This is applicable when the dimensions of
the cavity are much greater than the wave-
length of the electron acoustic waves in the
plasma.

A low-frequency resonance when the
plasma is incompressible and loss-free will
satisfy (3) with 8,=0 and »=0. The only
such frequency is wy/2!/2 [3]. Thus, for a
given electron density, there is only a single
resonant frequency, and this frequency is
independent of the radius of the cavity. This
result may be compared to that for a spheri-
cal cavity in an incompressible and loss-free
plasma, for which there is an infinite number
of resonances [2], [3].

When »/w is small and |r,a] is large, the
effects of losses and compressibility will be
small. The resonant frequencies can then be
regarded as having been slightly perturbed
from that in the incompressible loss-free
case.

Let (wn/2!1%) 40, where | Q] wy /2172, be
a (complex) resonant frequency when the
effects of losses and compressibility are
small. When »/w<1, (1) becomes
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Neglecting the product wr in (6) gives
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Hence, the resonance condition (3) can be
written
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where §, is given by (8). Replacing  in the
right-hand side of this expression by its
unperturbed resonant value wy/2!/2, and
using the condition || <wx/2!/2 in the left-
hand side, gives
v nu
o=—_"".
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(10)

Hence, in a shock-excited resonance of the
cavity the fields vary with time as
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Thus, the time constant with which the
fields decay depends only on the electron
collision frequency; it is independent of the
compressibility and the mode number #.
This time constant is the same as that found
for a spherical cavity in an isotropic slightly

lossy, slightly compressible plasma [2].
The fields oscillate with a real frequency
which is independent of the losses. The effect
of a non-zero value of # is to split the un-
perturbed resonant frequency wx/2!/2 into a
series of resonant frequencies, each separated
from the next by the amount #/(2a). Of
course, for sufficiently large |#], the quan-
tity |n|#/(2a) will no longer be small com-
pared with wx/2!/2; then (11) will not be

applicable.
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Attenuation Constants of
Waveguides with General
Cross Sections

1. THEORY

The cutoff frequencies and the fileld con-
figurations of waveguides with general cross
section can be calculated approximately by
the point-matching method,! provided that
the method is applicable. With the field

. configurations of the ideal waveguide (with

perfectly conducting guide walls) known, it
is expected that the attenuation constant
due to the finite conductivity of the guide
walls may be estimated numerically.

Conventionally, the attenuation con-
stant is defined as

a= Py/2Pr )]

if the guide is made of good conducting ma-
terial, where Py, is the power loss per unit
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length. The power transfer Pp is given as?
Pr=(1/2) f Re[E, X B#-2]dS ()
s

where .S is the cross-sectional area of the
waveguide, Z is the unit vector in the propa-
gating direction, and (*) denotes the opera-
tion of taking the complex conjugate. The
transverse components of the field E; and H,
can be calculated from the longitudinal com-
ponent ¢ (¢ =H, for TE modes, ¢y=E, for
TM modes), which was obtained by the
point-matching method.! Substituting the
expressions of E; and H, in terms of ¢ into
(2), and after some manipulation, the power
transfer can be reduced to

PT=GfSI¢|2dS 3)

where
G = (1/2Z)(f/f)%¢ for TM modes
G = (Zo/2)(f/f)%  for TE modes

¢=vi— (/0

and Zy=+/mo/e’ is the intrinsic impedance
of free space. The quantities f; and f are the
cutoff and operating frequencies, respec-
tively.

The power loss per unit length of the
guide is conventionally estimated by

Pr= (R/2) 9ch Hun|?dl (1)

where R = +/wuo/ 20 is the surface resistance
of the guide wall and ¢ is the conductivity of
the conducting material. The path C of the
line integral is the contour of the cross sec-
tion. The integrand in (4) is the square of the
magnitude of the magnetic field component
tangential to the periphery of the ideal guide
walls. Since the normal component of the
transverse magnetic field H, automatically
vanishes at the guide surface, it is then possible
to express Hyn for TM wave modes as
follows:

] Hian |2 = lﬁto'c; 0) l2 (%)
where 7., a function of 8, describes the cross-
sectional contour. For TE wave modes,
however, the longitudinal component of the

magnetic field also contributes to the tan-
gential component. Hence,

| Hun |2 = | Hilre, 0) |2+ | ¥0e, 0) 2 (6)

The square of the magnitude of the trans-
verse magnetic field may be written as

| H. |2 = (f/f)?F(r, 6) for TM modes (7)

and
] H, |2 = (ft/fk22F(r,0) for TE modes (8)

where

oo = () + (53"

Combining (1) through (8) yields the

following attenuation constants:

= (RS/ZZofkﬁ fs ] |//]2dS) §0F(rc, 6)r.db (9)
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Fig. 1. The square guide with the six chosen points.

CORRESP ONDENCE

prising, because H, for TE, is antisymmetric
with respect to the y-axis. Equation (11) is
a good approximation when compared with
the exact solution

¢ =0.5sinx

f: (=) na(x) cos 2n — 1) (12)

na=l

since Jr(kr)/Ji(kr)<0.001 for the largest
value of ¥ which is v/Z a.

The power transported in the waveguide
was calculated numerically using (3) and
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Exact Solution
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Fig. 2.

for TM wave modes, and

= (Rs/ZZof f v ist) [(;/k)z fﬁc F(rey0)rodo
+ el | ¥ (e, 0)

for TE wave modes. The integrations in (9)
and (10) can be performed numerically.

.d6] (10)

II. NuMERICAL EXAMPLE

To demonstrate the validity of the point-
matching method for determination of the
field distribution, power transfer, and the
attenuation constant, it is assumed that an
electromagnetic wave is propagating inside
a square waveguide in the TE;, mode. The
guide has a width of 2¢ and is placed with
its center at the origin of a rectangular

coordinate system as illustrated in Fig. 1. .

Since the longitudinal field component H, is
symmetrical with respect to the x-axis for
TE;,, the sine terms in (1) are omitted. The
cutoff wave number calculated by using six
points only on the upper half of the guide’s
cross-sectional contour is 1.5716, compared
with the exact value of 1.5708. The expan-
sion coefficients were determined in terms of
the coefficient 4,, which is equal to a pre-
assigned value of unity. The resulting wave
function is therefore expressed in the follow-
ing form;

G Hum 3 (= )" g1 (br) cos (2n—1)6 (11)
n=1

with three-place accuracy. The disappear-
ance of the even terms in (11) is not sur-
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The attenuation constants of the square waveguide.

(11), and the result was 0.1256, which is
excellent when compared with the exact
value of 0.1250.

The attenuation constant is obtained by
substituting the approximate wave function
(11) into (10) and performing numerical
integrations. It is

(ocde 0/ Rsc)
= (0.994/20)\/f/f. [1 + 2.014(f./f)?]

(13)

where R,.=R.\/f./f, the surface resistance
at cutoff frequency, and «, denotes the
attenuation constant of the point-matching
solution. The exact attenuation constant .
for a square guide of 2a is given by?

(@aZo/Ru) = /20V/F/f [L+2(5/0)?]. (14)

The comparison of these two attenuation

constants is shown in Fig. 2 over the fre-

quency range of (f/f.)=1 through 10. The

validity of the attenuation constant calcu-

lated by the point matching solutions is then
verified.
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On Transverse Electromagnetic
Wave Propagation in a Cylindrically
Stratified Magnetoplasma

This communication is concerned with a
second-order ordinary differential equation
arising in the theory of electromagnetic
waves in a cylindrically stratified, axially
magnetized plasma. The equation describes
transverse propagation when the wave's
magnetic field has only an axial component.

Galejs [1] and Yeh and Rusch [2], [3]
have studied the transverse propagation of
electromagnetic waves in a cylindrically
stratified, axially magnetized plasma. It was
found that in a continuously varying plasma,
the fields are described by two uncoupled
wave equations. Thus, the total field can be
expressed as the sum of two partial fields
which propagate independently. These may
be called E-parallel and H-parallel fields,
with the electric and magnetic vectors, re-
spectively, having only axial components.

The differential equation describing E-
parallel fields is unaffected by the static
magnetic field [3]. The equation describing
H-parallel fields was derived [t], [3], and
its normal form will be considered here.

Cylindrical polar coordinates (r, ¢, z)
are used, with the static magnetic field in
the z direction. The inverse permittivity
tensor (¢7!) in the magnetoplasma is given

by [4], [5]

M —iK 0
ele) = K M 0 1)
0 0 eo/é"

where ¢ is the permittivity of free space,
The quantities M, K, and ¢’ have been de-
fined by Wait [4], [5]. A time factor ¢™¢ is
taken where w is the angular frequency of
the fields and ¢ is the time. The plasma is
taken to be cylindrically stratified with M,
K, and &'’ depending on 7. The permeahility
has the free space value uo.

For propagation transverse to the im-
posed field, the fields are independent of z.
Consider the case in which the magnetic
field of the wave has only a 2 component H.
The variables can be separated by writing

)
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where # is an integer and a, is independent
of the coordinates. It is found from Max-
well’s equations that f,.(r) satisfies

&

e + I(")fn = 3
where
kot 1 /1 dM\? 1 M
o= L (L Ay L
M 4 \M dr 2M  drt
1 dM  4n -1 n dK @
2rM dr 4% M ar

in which ko? = w?uoco.

Equations (3) and (4) may be compared
with equations describing propagation in a
planar stratified magnetoplasma [6]. Com-
ments similar to those made previously [6]
will now apply in the cylindrical case.
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